The non-obese diabetic (NOD) mouse spontaneously develops diabetes and sialadenitis. The sialadenitis is characterized by histopathological changes in salivary glands and functional deficit similar to Sjögren's syndrome. In humans, Sjögren's syndrome could be associated with other connective tissue disorders, such as rheumatoid arthritis. In the present study the genetic control of sialadenitis in mice was compared to that of arthritis. We have previously reported a NOD locus, identified in an F2 cross with the H2(q) congenic NOD (NOD.Q) and C57BL/10.Q (B10.Q) strains, that promoted susceptibility to collagen-induced arthritis. The sialadenitis in NOD.Q showed a similar histological phenotype as in NOD, whereas no submandibular gland infiltration was found in B10.Q. The development of sialadenitis was independent of immunization with type II collagen and established arthritis. To identify the genetic control of sialadenitis, a gene segregation experiment was performed on an (NOD.QxB10.Q)F2 cross and genetic mapping of 353 F2 mice revealed one significant locus associated with sialadenitis on chromosome 4, LOD score 4.7. The NOD.Q allele-mediated susceptibility under a recessive inheritance pattern. The genetic control of sialadenitis seemed to be unique in comparison to diabetes and arthritis, as no loci associated with these diseases have been identified at the same location.