Pharmacologic mitogen-activated protein/extracellular signal-regulated kinase kinase/mitogen-activated protein kinase inhibitors interact synergistically with STI571 to induce apoptosis in Bcr/Abl-expressing human leukemia cells

Cancer Res. 2002 Jan 1;62(1):188-99.

Abstract

Interactions between the kinase inhibitor STI571 and pharmacological antagonists of the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)/mitogen-activated protein kinase (MAPK) cascade have been examined in human myeloid leukemia cells (K562 and LAMA 84) that express the Bcr-Abl kinase. Exposure of K562 cells to concentrations of STI571 that minimally induced apoptosis (e.g., approximately 200 nM) resulted in early suppression (i.e., at 6 h) of p42/44 MAPK phosphorylation followed at later intervals (i.e., > or =24 h) by a marked increase in p42/44 MAPK phosphorylation/activation. Coadministration of a nontoxic concentration of the MEK1/2 inhibitor PD184352 (5 microM) prevented STI571-mediated activation of p42/44 MAPK. Cells exposed to STI571 in combination with PD184352 for 48 h demonstrated a very dramatic increase in mitochondrial dysfunction (e.g., loss of DeltaPsim and cytosolic cytochrome c release) associated with procaspase-3 activation, poly(ADP-ribose) polymerase cleavage, and the appearance of the characteristic morphological features of apoptosis. Similar results were obtained using other pharmacological MEK1/2 inhibitors (e.g., PD 98059 and U0126) as well as another leukemic cell line that expresses Bcr-Abl (e.g., LAMA 84). However, synergistic induction of apoptosis by STI571 and PD184352 was not observed in human myeloid leukemia cells that do not express the Bcr-Abl kinase (e.g., HL-60 and U937) nor in normal human peripheral blood mononuclear cells. Synergistic potentiation of STI571-mediated lethality by PD184352 was associated with multiple perturbations in signaling and apoptotic regulatory pathways, including caspase-dependent down-regulation of Bcr-Abl and Bcl-2; caspase-independent down-regulation of Bcl-x(L) and Mcl-1; activation of JNK, p38 MAPK, and p34(cdc2); and diminished phosphorylation of Stat5 and CREB. Significantly, coexposure to PD184352 strikingly increased the lethality of a pharmacologically achievable concentration of STI571 (i.e., 1-2 microM) in resistant K562 cells expressing marked increases in Bcr-Abl protein levels. Together, these findings raise the possibility that treatment of Bcr-Abl-expressing cells with STI571 elicits a cytoprotective MAPK activation response and that interruption of the latter pathway (e.g., by pharmacological MEK1/2 inhibitors) is associated with a highly synergistic induction of mitochondrial damage and apoptosis. They also indicate that in the case of Bcr-Abl-positive cells, simultaneous interruption of two signal transduction pathways may represent an effective antileukemic strategy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Activating Transcription Factor 1
  • Antineoplastic Agents / pharmacology
  • Apoptosis / drug effects*
  • Apoptosis / physiology
  • Benzamides / pharmacology*
  • CDC2 Protein Kinase / metabolism
  • Cyclic AMP Response Element-Binding Protein / metabolism
  • DNA-Binding Proteins / metabolism
  • Down-Regulation / drug effects
  • Drug Synergism
  • Enzyme Inhibitors / pharmacology*
  • Fusion Proteins, bcr-abl / biosynthesis*
  • G1 Phase / drug effects
  • HL-60 Cells / drug effects
  • HL-60 Cells / enzymology
  • HL-60 Cells / pathology
  • Humans
  • Imatinib Mesylate
  • JNK Mitogen-Activated Protein Kinases
  • K562 Cells / drug effects
  • K562 Cells / enzymology
  • K562 Cells / pathology
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2
  • MAP Kinase Kinase Kinases / antagonists & inhibitors*
  • MAP Kinase Kinase Kinases / physiology
  • MAP Kinase Signaling System / drug effects*
  • MAP Kinase Signaling System / physiology
  • Milk Proteins*
  • Mitogen-Activated Protein Kinase Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinase Kinases / physiology
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors*
  • Mitogen-Activated Protein Kinases / metabolism
  • Mitogen-Activated Protein Kinases / physiology
  • Phosphorylation / drug effects
  • Piperazines / pharmacology*
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / physiology
  • Protein-Tyrosine Kinases / antagonists & inhibitors
  • Protein-Tyrosine Kinases / physiology
  • Pyrimidines / pharmacology*
  • Resting Phase, Cell Cycle / drug effects
  • STAT5 Transcription Factor
  • Trans-Activators / metabolism
  • Transcription Factors
  • U937 Cells / drug effects
  • U937 Cells / enzymology
  • U937 Cells / pathology

Substances

  • 2-(2-chloro-4-iodophenylamino)-N-cyclopropylmethoxy-3,4-difluorobenzamide
  • Activating Transcription Factor 1
  • Antineoplastic Agents
  • Benzamides
  • Cyclic AMP Response Element-Binding Protein
  • DNA-Binding Proteins
  • Enzyme Inhibitors
  • Milk Proteins
  • Piperazines
  • Pyrimidines
  • STAT5 Transcription Factor
  • Trans-Activators
  • Transcription Factors
  • Imatinib Mesylate
  • MAP2K2 protein, human
  • Protein-Tyrosine Kinases
  • Fusion Proteins, bcr-abl
  • Protein Serine-Threonine Kinases
  • CDC2 Protein Kinase
  • JNK Mitogen-Activated Protein Kinases
  • Mitogen-Activated Protein Kinases
  • MAP Kinase Kinase Kinases
  • MAP Kinase Kinase 1
  • MAP Kinase Kinase 2
  • MAP2K1 protein, human
  • Mitogen-Activated Protein Kinase Kinases