Evidence suggests that the arachidonic acid metabolite of 12-lipoxygenase, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), not only mediates the effects of angiotensin II (AngII), but also has direct effects on hypertrophy and matrix protein production in vascular smooth muscle cells (VSMCs). This study is aimed at identifying the signaling pathways involved in these events. Treatment of porcine VSMCs with 12(S)-HETE led to the activation of Ras and p38 MAPK. It also stimulated phosphorylation, DNA-binding activity, and transactivation of the transcription factor cAMP response element (CRE)-binding protein. In addition, 12(S)-HETE induced transcription from a fibronectin promoter containing multiple CREs. AngII also induced transactivation of CRE-binding protein and transcription from the fibronectin promoter. A specific p38 MAPK inhibitor (SB202190) as well as a dominant-negative Ras mutant (Ras-N17) blocked both 12(S)-HETE and AngII effects. In addition, inhibitors of lipoxygenase also blocked AngII effects. Both 12(S)-HETE and AngII increased cellular hypertrophy with similar potency, and this was significantly blocked by SB202190. Stable overexpression of murine leukocyte-type 12/15-lipoxygenase in VSMCs increased the levels of cell-associated 12(S)-HETE as well as basal activity of both ERK and p38 MAPKs. Furthermore, these 12-lipoxygenase-overexpressing cells displayed significantly greater cellular hypertrophy relative to mock-transfected cells. These results show for the first time that oxidized lipids such as 12(S)-HETE can induce VSMC growth and matrix gene expression and mediate growth factor effects via activation of the Ras-MAPK pathway and key target transcription factors.