Genes expressed during the IFN gamma-induced maturation of pre-B cells

Mol Immunol. 2002 Jan;38(8):597-606. doi: 10.1016/s0161-5890(01)00097-9.

Abstract

Interferon-gamma (IFN gamma) exerts diverse responses in B cell development ranging from growth arrest and apoptosis to proliferation and differentiation. IFN gamma stimulates murine 70Z/3 pre-B cells to express surface immunoglobulin (Ig) and this system serves as a useful model for the pre-B to immature B cell transition in B cell development. To analyze this developmental transition, we used a PCR-based subtractive hybridization in combination with miniarray screening to identify differentially-expressed genes in IFN gamma-stimulated compared with unstimulated 70Z/3 pre-B cells. The majority (44%) of the differentially-expressed genes obtained were known IFN gamma-inducible. These included multiple isolates from each of three multi-gene families, including two guanylate-binding protein (47 and 67kDa GBP) families of GTPases and the hematopoietic IFN gamma-inducible nuclear protein family (HIN-200). These multiple isolates of genes comprised the majority of the total isolated and sequenced clones. Other known IFN gamma-induced genes in this group included Ig kappa light chain and Ly-6, as well as genes with functions in antigen processing, cellular regulation, and cytoskeletal organization. Another 36% of the genes identified were previously known, but not known to be IFN gamma-inducible (e.g. pre-B cell enhancing factor, PBEF). The remaining 20% of the IFN gamma-induced isolates did not match entries in Genbank, and thus, may represent novel genes involved in IFN gamma responses and/or in the pre-B to immature B cell transition. Overall, the majority of the individual genes isolated were either not known to be IFN gamma responsive or were not previously known.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • B-Lymphocytes / drug effects
  • B-Lymphocytes / immunology*
  • Cell Differentiation
  • Cell Line
  • GTP-Binding Proteins / biosynthesis
  • GTP-Binding Proteins / genetics
  • Gene Expression Profiling
  • Interferon-gamma / pharmacology*
  • Mice
  • Oligonucleotide Array Sequence Analysis
  • RNA, Messenger / biosynthesis
  • Stem Cells / drug effects
  • Transcriptional Activation*

Substances

  • RNA, Messenger
  • Interferon-gamma
  • GTP-Binding Proteins