Previous studies on Toxoplasma gondii population structure, based essentially on multilocus restriction fragment length polymorphism analysis or on multilocus enzyme electrophoresis, indicated that T. gondii comprises three clonal lineages. These studies showed a weak polymorphism of the markers (2-4 alleles by locus). In this study, we used eight microsatellite markers to type 84 independent isolates from humans and animals. Two microsatellite markers were present in the introns of two genes, one coding for beta-tubulin and the other for myosin A, and six were found in expressed sequence tags. With 3-16 alleles detected, these markers can be considered as the most discriminating multilocus single-copy markers available for typing T. gondii isolates. This high discriminatory power of microsatellites made it possible to detect mixed infections and epidemiologically related isolates. Evolutionary genetic analyses of diversity show that the T. gondii population structure consists of only two clonal lineages that can be equated to discrete typing units, but there is some evidence of occasional genetic exchange that could explain why one of these discrete typing units is less clearly individualised than the other.