In eukaryotes, entry into M-phase of the cell cycle is induced by activation of cyclin B-Cdc2 kinase. At G2-phase, the activity of its inactivator, a member of the Wee1 family of protein kinases, exceeds that of its activator, Cdc25C phosphatase. However, at M-phase entry the situation is reversed, such that the activity of Cdc25C exceeds that of the Wee1 family. The mechanism of this reversal is unclear. Here we show that in oocytes from the starfish Asterina pectinifera, the kinase Akt (or protein kinase B (PKB)) phosphorylates and downregulates Myt1, a member of the Wee1 family. This switches the balance of regulator activities and causes the initial activation of cyclin B-Cdc2 at the meiotic G2/M-phase transition. These findings identify Myt1 as a new target of Akt, and demonstrate that Akt functions as an M-phase initiator.