To investigate the role of A(2A) adenosine receptors in adaptive responses to chronic intermittent dopamine receptor stimulation, we compared the behavioral sensitization elicited by repeated l-DOPA treatment in hemiparkinsonian wild-type (WT) and A(2A) adenosine receptor knock-out (A(2A) KO) mice. Although the unilateral nigrostriatal lesion produced by intrastriatal injection of 6-hydroxydopamine was indistinguishable between WT and A(2A) KO mice, they developed strikingly different patterns of behavioral sensitization after daily treatment with low doses of l-DOPA for 3 weeks. WT mice initially displayed modest contralateral rotational responses and then developed progressively greater responses that reached a maximum within 1 week and persisted for the duration of the treatment. In contrast, any rotational behavioral sensitization in A(2A) KO mice was transient and completely reversed within 2 weeks. Similarly, the time to reach the peak rotation was progressively shortened in WT mice but remained unchanged in A(2A) KO mice. Furthermore, daily l-DOPA treatment produced gradually sensitized grooming in WT mice but failed to induce any sensitized grooming in A(2A) KO mice. Finally, repeated l-DOPA treatment reversed the 6-OHDA-induced reduction of striatal dynorphin mRNA in WT but not A(2A) KO mice, raising the possibility that the A(2A) receptor may contribute to l-DOPA-induced behavioral sensitization by facilitating adaptations within the dynorphin-expressing striatonigral pathway. Together these results demonstrate that the A(2A) receptor plays a critical role in the development and particularly the persistence of behavioral sensitization to repeated l-DOPA treatment. Furthermore, they raise the possibility that the maladaptive dyskinetic responses to chronic l-DOPA treatment in Parkinson's disease may be attenuated by A(2A) receptor inactivation.