YvcC, a multidrug transporter from Bacillus subtilis, is a member of the ATP-binding cassette superfamily, highly homologous to each half of human multidrug-resistance P-glycoprotein and to several other bacterial half-ABC transporters. Here, the purified recombinant histidine-tagged YvcC has been reconstituted into a lipid bilayer. Controlled and partial detergent removal from YvcC-lipid micelles allowed the production of particularly interesting lipid-detergent-YvcC ring-shaped particles, about 40 nm in diameter, well suited for single particle analysis by cryo-electron microscopy. Furthermore, binding of these histidine-tagged ring-shaped particles to lipid layers functionalized with a Ni(2+)-chelating head group generated a preferential perpendicular orientation, eliminating the missing cone in the final three-dimensional reconstruction. From such analysis, a computed volume has been determined to 2.5 nm resolution giving a detailed insight into the structural organization of this half-ABC transporter within a membrane. The repetitive unit in the ring-shaped particles is consistent with a homodimeric organization of YvcC. Each subunit was composed of three domains: a 5 nm height transmembrane region, a stalk of about 4 nm in height and 2 nm in diameter, and a cytoplasmic lobe of about 5-6 nm in diameter. The latest domain, which fitted with the reported X-ray structure of HisP, was identified as the nucleotide-binding domain (NBD). The 3D reconstruction of the YvcC homodimer well compared with the very recent X-ray crystallographic data on the MsbA homodimer from Escherichia coli, supporting the existence of a central open chamber between the two subunits constituting the homodimer. In addition, the 3D reconstruction of YvcC embedded in a membrane revealed an asymmetric organization of the two NBDs sites within the homodimer, as well as a dimeric interaction between two homodimers.
Copyright 2002 Elsevier Science Ltd.