The substrate specificity of CPB2.8DeltaCTE, a recombinant cysteine protease from Leishmania mexicana, was mapped by screening a fluorescence-quenched combinatorial peptide library. Results from library screening indicated a preference for Arg or Lys in the S(3) subsite and for hydrophobic residues, both aliphatic and aromatic, in S(2). The S(1) subsite exhibited a specificity for the basic residues Arg and Lys. Generally, the specificity of the primed subsites was less strict compared with the non-primed side which showed preference for Arg, Lys and Ala in S'(1), Arg, Pro and Gly in S'(2) and Lys, Arg and Ser in S'(4). By contrast, a strict preference for the basic residues Arg and Lys was found for S'(3). Overall, there was a trend for basic residues in alternating subsites and smaller residues in the primed sites compared with the non-primed sites. In addition, there were strict requirements for the amino acids in subsites S(3)--S(1). Fluorescence-quenched peptides from the library with the highest on-resin cleavage were resynthesised and their kinetics of hydrolysis by CPB2.8DeltaCTE assessed in solution phase assays. Several good substrates containing the quintessential dipeptide particular to cathepsin-L-like enzymes, -F-R/K-, in P(2) and P(1) were identified (e.g. Y(NO(2))-EKFR down arrow RGK-K(Abz)G, Abz=2-aminobenzoyl; k(cat)K(m)(-1)=4298 mM(-1)s(-1)). However, novel substrates containing the dipeptide -L/I-Q- in P(2) and P(1) were also well hydrolysed (e.g. Y(NO(2))-YLQ down arrow GIQK-K(Abz)G; k(cat)K(m)(-1)=2583 mM(-1)s(-1)). The effect of utilising different fluorescent donor--quencher pairs on the value of k(cat)K(m)(-1) was examined. Generally, the use of the Abz/Q-EDDnp donor--quencher pair (EDDnp=N-(2,4-dinitrophenyl)ethylenediamine) instead of K(Abz)/Y(NO(2)) resulted in higher k(cat)K(m)(-1) values for analogous substrates.