Measle virus (MV) infection induces a transient but profound immunosuppression characterized by a panlymphopenia which occasionally results in opportunistic infections responsible for a high rate of mortality in malnourished children. MV can encounter human dendritic cells (DC) in the respiratory mucosa or in the secondary lymphoid organs. After a brief presentation of DCs, we review progress in understanding the immunobiology of MV-infected DCs that could account for MV-induced immunosuppression. In addition, we develop the newly described TRAIL-mediated cytotoxic function of DCs that is turned on by MV infection, but also by interferons or double-stranded RNA (poly (I:C)). Finally, we propose a model where the measles-associated lymphopenia could be mediated by TRAIL and the measles-induced immunosuppression could be transiently prolonged by Fas-mediated destruction of DCs.