Forty-nine strains of lactic acid bacteria (LAB), isolated from commercially available ready-to-eat (RTE) meat products, were screened for their ability to inhibit the growth of Listeria monocytogenes at refrigeration (5 degrees C) temperatures on agar spot tests. The three most inhibitory strains were identified as Pediococcus acidilactici, Lactobacillus casei, and Lactobacillus paracasei by 16S rDNA sequence analysis. Their antilisterial activity was quantified in associative cultures in deMan Rogosa Sharpe (MRS) broth at 5 degrees C for 28 days, resulting in a pathogen reduction of 3.5 log10 cycles compared to its initial level. A combined culture of these strains was added to frankfurters and cooked ham coinoculated with L. monocytogenes, vacuum packaged, and stored at 5 degrees C for 28 days. Bacteriostatic activity was observed in cooked ham, whereas bactericidal activity was observed in frankfurters. Numbers of L. monocytogenes were 4.2 to 4.7 log10 and 2.6 log10 cycles lower than controls in frankfurters and cooked ham, respectively, after the 28-day refrigerated storage. In all cases, numbers of LAB increased by only 1 log10 cycle. The strain identified as P. acidilactici was possibly a bacteriocin producer, whereas the antilisterial activity of the other two strains was due to the production of organic acids. There was no significant difference (P > 0.05) in the antilisterial activity detected in frankfurters whether the LAB strains were used individually or as combined cultures. Further studies over a 56-day period indicated no impact on the quality of the product. This method represents a potential antilisterial intervention in RTE meats, because it inhibited the growth of the pathogen at refrigeration temperatures without causing sensory changes.