It is accepted that cell-mediated immune responses predominate in mycobacterial infections. Many studies have shown that CD4(+) T cells produce Th1 cytokines, such as gamma interferon (IFN-gamma), in response to mycobacterial antigens and that the cytolytic activity of CD8(+) cells toward infected macrophages is important. However, the extent and manner in which gamma delta T cells participate in this response remain unclear. In ruminants, gamma delta T cells comprise a major proportion of the peripheral blood mononuclear cell population. We have previously shown that WC1(+) gamma delta T cells are involved early in Mycobacterium bovis infection of cattle, but their specific functions are not well understood. Here we describe an in vivo model of bovine tuberculosis in which the WC1(+) gamma delta T cells were depleted from the peripheral circulation and respiratory tract, by infusion of WC1(+)-specific monoclonal antibody, prior to infection. While no effects on disease pathology were observed in this experiment, results indicate that WC1(+) gamma delta T cells, which become significantly activated (CD25(+)) in the circulation of control calves from 21 days postinfection, may play a role in modulating the developing immune response to M. bovis. WC1(+)-depleted animals exhibited decreased antigen-specific lymphocyte proliferative response, an increased antigen-specific production of interleukin-4, and a lack of specific immunoglobulin G2 antibody. This suggests that WC1(+) gamma delta TCR(+) cells contribute, either directly or indirectly, toward the Th1 bias of the immune response in bovine tuberculosis--a hypothesis supported by the decreased innate production of IFN-gamma, which was observed in WC1(+)-depleted calves.