Eosinophil infiltration into the esophagus occurs in a wide range of diseases; however, the underlying pathophysiological mechanisms involved are largely unknown. We now report that the Th2 cytokine, IL-5, is necessary and sufficient for the induction of eosinophil trafficking to the esophagus. We show that transgenic mice overexpressing IL-5 under the control of a T cell (CD2) or a small intestinal enterocyte (fatty acid-binding protein) promoter have markedly increased eosinophil numbers in the esophagus. For example, esophageal eosinophil levels are 1.9 +/- 0.9 and 121 +/- 14 eosinophils/mm(2) in wild-type and CD2-IL-5-transgenic mice, respectively. Consistent with this effect being mediated by a systemic mechanism, pharmacological administration of IL-5 via a miniosmotic pump in the peritoneal cavity resulted in blood and esophageal eosinophilia. To examine the role of IL-5 in oral Ag-induced esophageal eosinophilia, eosinophilic esophagitis was induced by allergen exposure in IL-5-deficient and wild-type mice. Importantly, IL-5-deficient mice were resistant to eosinophilic esophagitis. Finally, we examined the role of eotaxin when IL-5 was overproduced in vivo. Esophageal eosinophil levels in CD2-IL-5-transgenic mice were found to decrease 15-fold in the absence of the eotaxin gene; however, esophageal eosinophil numbers in eotaxin-deficient IL-5-transgenic mice still remained higher than wild-type mice. In conclusion, these studies demonstrate a central role for IL-5 in inducing eosinophil trafficking to the esophagus.