Mechanisms maintaining peripheral tolerance to self-antigens present a major obstacle for the development of antigen-specific melanoma vaccines, presumably because self-antigens are not able to stimulate a CD4 T-helper response. Using the melanosomal enzyme tyrosinase-related protein 2 (TRP2) expressed by melanocytes and most melanoma cells as a model self-antigen, we investigated whether linkage with a foreign immunogenic protein providing strong CD4 helper sequences would be able to circumvent tolerance and enhance the induction of antigen-specific tumor immunity. We found that genetic immunization of mice with cDNA encoding a fusion protein between enhanced green fluorescent protein (EGFP) from jellyfish and autologous murine TRP2 (EGFP.mTRP2) resulted in the stimulation of TRP2-reactive T cells in vivo. Importantly, immunization with EGFP.mTRP2 effectively protected mice against metastatic growth of B16 melanoma in the lungs and was associated with fur depigmentation as a sign of autoimmune-mediated destruction of melanocytes. Our results show that tumor vaccines consisting of self-antigens linked to immunogenic helper sequences can be successfully applied to the immunotherapy of melanoma and provide a scientific basis for the translation of this strategy in future clinical investigations.