We and others demonstrated that the mRNAs encoding GATA-binding proteins, GATA-1 and GATA-4, were detected in mouse and rat testis, and in isolated rat Sertoli cells and testicular tumor cell lines derived from Leydig and Sertoli cells. In this study, we investigated the possible effects of gonadotropins and cAMP on the expression of GATA-binding protein genes in testicular cells. Unexpectedly, FSH negatively regulated GATA-1 (but not GATA-4) mRNA in a dose-dependent manner in primary cultures of rat Sertoli cells isolated from 21-d-old animals. GATA-1 mRNA was also negatively regulated by cAMP in a dose- and time-dependent manner in MA-10, a mouse Leydig tumor cell line. When 0.3 mM cAMP was administered to MA-10 cell cultures for 4 h, more than 95% of the GATA-1 mRNA and protein was abolished. The reduction of GATA-1 mRNA by cAMP can be mimicked by treatment with forskolin, which elevates intracellular cAMP levels. The inhibitory effect of cAMP was specific to the GATA-1 gene, given that GATA-4 and alpha-tubulin mRNA levels were not changed by any of the cAMP treatments. Inhibin alpha-subunit mRNA, on the other hand, was evidently increased by cAMP treatment in both MA-10 and Sertoli cells. However, inhibin alpha-subunit mRNA levels were elevated at 60-90 min before the suppression of GATA-1 mRNA detected. The inhibitory effect of cAMP on GATA-1 mRNA and protein was shown to be specific to testicular cells. The GATA-1 mRNA expressed in MEL, a mouse erythroid leukemia cell line, was not affected by cAMP. The reduction of GATA-1 mRNA by cAMP can be prevented when a translational inhibitor, cycloheximide, is added. In summary, we demonstrated that gonadotropins via cAMP negatively regulate the mRNA and protein levels of GATA-1, but not GATA-4, in testicular cells. The inhibitory effect on GATA-1 gene expression was specific to testicular cells and was not observed in erythroid cells.