We propose a novel physical realization of a quantum computer. The qubits are electric dipole moments of ultracold diatomic molecules, oriented along or against an external electric field. Individual molecules are held in a 1D trap array, with an electric field gradient allowing spectroscopic addressing of each site. Bits are coupled via the electric dipole-dipole interaction. Using technologies similar to those already demonstrated, this design can plausibly lead to a quantum computer with greater, approximately > or = 10(4) qubits, which can perform approximately 10(5) CNOT gates in the anticipated decoherence time of approximately 5 s.