Purpose: To determine whether measurement of chromosome aberrations by fluorescence in situ hybridization (FISH) predicts cell survival after irradiation at different dose-rates and after radiosensitization by bromodeoxyurdine (BrdU) in a lung carcinoma cell line.
Materials and methods: The human lung carcinoma cell line SW1573 was irradiated at high dose-rate (HDR: 0.8 Gy min-1) or at pulsed low dose-rate (p-LDR: average dose-rate 1 Gy h-1) with or without radiosensitization by bromodeoxyuridine (BrdU). Cell survival was determined by clonogenic assay. Chromosome aberrations (colour junctions) were measured by whole-chromosome FISH of chromosome 2 and 18 and were scored according to the PAINT method.
Results: Clear radiosensitization by BrdU was observed both after HDR and p-LDR irradiation. Chromosome 18 was more radiosensitive than chromosome 2. There was a good correlation between induction of colour junctions and cell survival both after HDR and p-LDR irradiation and after radiosensitization by BrdU.
Conclusions: Determination of chromosome aberrations by FISH can predict cell survival after different dose-rates and after radiosensitization by BrdU