The execution (Go) and the inhibition (NoGo) of a motor response are basic cognitive processes that can be assessed by means of a simple neuropsychological Go-NoGo task: the Continuous Performance Test (CPT). Simultaneous electrophysiologic investigations revealed that the NoGo condition of the CPT is associated with a clearly more anterior brain electrical activity compared with the Go condition. Recently, it has been shown that this NoGo anteriorization effect during a response control paradigm can be measured quantitatively with the electrophysiologic centroid method. The objective of the current study, therefore, was to determine the long-term reliability of the topographic measures of cognitive response control (i.e., location of the Go and the NoGo centroid and the NoGo anteriorization). For this purpose, a 21-channel EEG was recorded twice from 13 healthy volunteers during their execution of a cued CPT (O-X version). The time interval between test and retest was 2.74 years (range, 2.41 to 2.97 years). Statistical analysis of the event-related Go and NoGo potentials revealed an excellent test-retest reliability, as expressed by Pearson's product moment correlation coefficients of more than 0.85 (P < or = 0.0005) and intraclass correlation coefficients of more than 0.90 (P </= 0.0005) for all three topographic measures. These results indicate that these electrophysiologic parameters present with superior long-term reliability and that they may be applied as electrophysiologic trait markers of response control mechanisms in the human brain.