Ontogeny of thermoregulatory mechanisms in king penguin chicks (Aptenodytes patagonicus)

Comp Biochem Physiol A Mol Integr Physiol. 2002 Apr;131(4):765-73. doi: 10.1016/s1095-6433(02)00014-4.

Abstract

The rapid maturation of thermoregulatory mechanisms may be of critical importance for optimising chick growth and survival and parental energy investment under harsh climatic conditions. The ontogeny of thermoregulatory mechanisms was studied in growing king penguin chicks from hatching to the full emancipation observed at 1 month of age in the sub-Antarctic area (Crozet Archipelago). Newly hatched chicks showed small, but significant regulatory thermogenesis (21% rise in heat production assessed by indirect calorimetry), but rapidly became hypothermic. Within a few days, both resting (+32%) and peak (+52%) metabolic rates increased. The first week of life was characterised by a two-fold rise in thermogenic capacity in the cold, while thermal insulation was not improved. During the second and third weeks of age, thermal insulation markedly rose (two-fold drop in thermal conductance) in relation to down growth, while resting heat production was slightly reduced (-13%). Shivering (assessed by electromyography) was visible right after hatching, although its efficiency was limited. Thermogenic efficiency of shivering increased five-fold with age during the first weeks of life, but there was no sign of non-shivering thermogenesis. We conclude that thermal emancipation of king penguin chicks may be primarily determined by improvement of thermal insulation after thermogenic processes have become sufficiently matured. Both insulative and metabolic adaptations are required for the rapid ontogeny of thermoregulation and thermal emancipation in growing king penguin chicks.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Birds / growth & development
  • Birds / metabolism
  • Birds / physiology*
  • Calorimetry
  • Thermogenesis