Hantaviruses cause two severe diseases, haemorrhagic fever with renal syndrome in Eurasia and hantavirus pulmonary syndrome in the Americas. To understand more about the molecular mechanisms that lead to these diseases, the associations of Puumala virus nucleocapsid protein (PUUV-N) with cellular proteins were studied by yeast two-hybrid screening. Daxx, known as an apoptosis enhancer, was identified from a HeLa cDNA library and its interaction with PUUV-N was confirmed by GST pull-down assay, co-immunoprecipitation and co-localization studies. Furthermore, domains of interaction were mapped to the carboxyl-terminal region of 142 amino acids in Daxx and the carboxyl-terminal 57 residues in PUUV-N, respectively. In pepscan assays, the binding sites of Daxx to PUUV-N were mapped further to two lysine-rich regions, of which one overlaps the sequence of the predicted nuclear localization signal of Daxx. These data suggest a direct link between host cell machinery and a hantavirus structural component.