Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain

J Cereb Blood Flow Metab. 2002 Apr;22(4):393-403. doi: 10.1097/00004647-200204000-00003.

Abstract

Tolerance to cerebral ischemia is achieved by preconditioning sublethal stresses, such as ischemia or hypoxia, paradigms in which the decrease of O2 availability may constitute an early signal inducing tolerance. In accordance with this concept, this study shows that hypoxia induces tolerance against focal permanent ischemia in adult mice. Normobaric hypoxia (8% O2 of 1-hour, 3-hour, or 6-hour duration), performed 24 hours before ischemia, reduces infarct volume by approximately 30% when compared with controls. To elucidate the mechanisms underlying this neuroprotection, the authors investigated the effects of preconditioning on cerebral expression of hypoxia-inducible factor-1alpha (HIF-1alpha) and its target genes, erythropoietin and vascular endothelial growth factor (VEGF). Hypoxia, whatever its duration (1 hour, 3 hours, 6 hours), rapidly increases the nuclear content of HIF-1alpha as well as the mRNA levels of erythropoietin and VEGF. Furthermore, erythropoietin and VEGF are upregulated at the protein level 24 hours after 6 hours of hypoxia. The authors' findings show that (1) hypoxia elicits a delayed, short-lasting (<72 hours) tolerance to focal permanent ischemia in the adult mouse brain; (2) HIF-1 target genes could contribute to the establishment of tolerance; and (3) this model might be a useful paradigm to further study the mechanisms of ischemic tolerance, to identify new therapeutic targets for stroke.

MeSH terms

  • Animals
  • Brain / metabolism*
  • Brain / pathology
  • Brain Ischemia / physiopathology*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Endothelial Growth Factors / genetics
  • Endothelial Growth Factors / metabolism*
  • Erythropoietin / genetics
  • Erythropoietin / metabolism*
  • Hypoxia / physiopathology*
  • Hypoxia-Inducible Factor 1
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Ischemic Preconditioning
  • Lymphokines / genetics
  • Lymphokines / metabolism*
  • Male
  • Mice
  • Nuclear Proteins / genetics
  • Nuclear Proteins / metabolism*
  • Oxygen / metabolism
  • Time Factors
  • Transcription Factors*
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • DNA-Binding Proteins
  • Endothelial Growth Factors
  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Lymphokines
  • Nuclear Proteins
  • Transcription Factors
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Erythropoietin
  • Oxygen