Potassium currents play a critical role in action potential repolarization, setting of the resting membrane potential, control of neuronal firing rates, and regulation of neurotransmitter release. The diversity of the potassium channels that generate these currents is nothing less than staggering. This diversity is generated by multiple genes (as many as 100 and perhaps more in some creatures) encoding the pore-forming channel alpha subunits, alternative splicing of channel gene transcripts, formation of heteromultimeric channels, participation of auxiliary (non-pore-forming) beta and other subunits, and modulation of channel properties by post-translational modifications and other mechanisms. Prominent among the potassium channels are several families of calcium activated potassium channels, which are highly selective for potassium ions as their charge carrier, and require intracellular calcium for channel gating. The modulation of one of these families, that of the large conductance calcium activated and voltage-dependent potassium channels, has been especially widely studied. In this review we discuss a few selected examples of the modulation of these channels, to illustrate some of the molecular mechanisms and physiological consequences of ion channel modulation.