Objectives: In order to determine factors influencing the flow rate trough a created defect in human fetal membranes, an ex vivo set-up was used with fetal membranes collected from patients undergoing Caesarean section at term.
Methods: The membranes were secured at the bottom of a plastic tube and traumatised with needles ranging from 14-26 Gauges (Ga), under a hydrostatic pressure of 10 to 20 cm H(2)O and an angle of 45 degrees or 90 degrees. The column was filled with amniotic fluid or Hartmann's solution. The duration of the puncture was 1 s or the time it takes to aspirate 10 ml through the needle. The flow rate through the defect in the fetal membranes and size of the defect were measured.
Results: The flow rate and defect size increased with increasing diameter of the needle. Increasing the pressure in the column resulted in a significant linear increase in the flow rate. Replacing the saline solution with amniotic fluid did not result in significant changes in the measured flow rates, except for the small needle size (24 Ga). Increasing the duration of the puncture did not result in increased flow rates, except for small needle size (24 Ga).
Conclusion: These experiments suggest that needle diameter, angle of needle insertion, duration of the procedure, amniotic fluid pressure and composition could influence the incidence of amniotic fluid leakage following amniocentesis.
Copyright 2002 John Wiley & Sons, Ltd.