Specific interference with molecular mechanisms guiding tissue localization of leukocytes may be of great utility for selective immunosuppressive therapies. We have discovered and characterized efomycines, a new family of selective small-molecule inhibitors of selectin functions. Members of this family significantly inhibited leukocyte adhesion in vitro. Efomycine M, which was nontoxic and showed the most selective inhibitory effects on selectin-mediated leukocyte-endothelial adhesion in vitro, significantly diminished rolling in mouse ear venules in vivo as seen by intravital microscopy. In addition, efomycine M alleviated cutaneous inflammation in two complementary mouse models of psoriasis, one of the most common chronic inflammatory skin disorders. Molecular modeling demonstrated a spatial conformation of efomycines mimicking naturally occurring selectin ligands. Efomycine M might be efficacious in the treatment of human inflammatory disorders through a similar mechanism.