The Bacillus subtilis glpFK operon encoding the glycerol transport facilitator (GlpF) and glycerol kinase (GlpK) is induced by glycerol-3-P and repressed by rapidly metabolizable sugars. Carbon catabolite repression (CCR) of glpFK is partly mediated via a catabolite response element cre preceding glpFK. This operator site is recognized by the catabolite control protein A (CcpA) in complex with one of its co-repressors, P-Ser-HPr or P-Ser-Crh. HPr is a component of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), and Crh is an HPr homologue. The hprK-encoded HPr kinase phosphorylates HPr and Crh at Ser-46. But in neither ccpA nor hprK mutants was expression of a glpF'-lacZ fusion relieved from CCR, as a second, CcpA-independent CCR mechanism implying the terminator tglpFK, whose formation is prevented by the glycerol-3-P-activated antiterminator GlpP, is operative. Deletion of tglpFK led to elevated expression of the glpF'-lacZ fusion and to partial relief from CCR. CCR completely disappeared in DeltatglpFK mutants carrying a disruption of ccpA or hprK. The tglpFK-requiring CCR mechanism seems to be based on insufficient synthesis of glycerol-3-P, as CCR of glpFK was absent in ccpA mutants growing on glycerol-3-P or synthesizing H230R mutant GlpK. In cells growing on glycerol, glucose prevents the phosphorylation of GlpK by P-His-HPr. P-GlpK is much more active than GlpK, and the absence of P~GlpK formation in DeltaptsHI strains prevents glycerol metabolism. As a consequence, only small amounts of glycerol-3-P will be formed in glycerol and glucose-exposed cells (inducer exclusion). The uptake of glycerol-3-P via GlpT provides high concentrations of this metabolite in the ccpA mutant and allows the expression of the glpF'-lacZ fusion even when glucose is present. Similarly, despite the presence of glucose, large amounts of glycerol-3-P are formed in a glycerol-exposed strain synthesizing GlpKH230R, as this mutant GlpK is as active as P-GlpK.