The farnesyl transferase inhibitor RPR-130401 does not alter radiation susceptibility in human tumor cells with a K-Ras mutation in spite of large changes in ploidy and lamin B distribution

BMC Pharmacol. 2002:2:2. doi: 10.1186/1471-2210-2-2. Epub 2002 Feb 6.

Abstract

Background: Growth inhibition by RPR-130401, a non-peptidomimetic farnesyltransferase inhibitor, was investigated without or with combined exposure to ionizing radiation in three human tumor cell lines (HCT-116, MiAPaCa-2 and A-549) bearing a point mutation in the K-Ras gene.

Results: RPR-130401 inhibited cell growth with an IC50 of 50 nM (HCT-116), 120 nM (MiAPaCa-2) and 710 nM (A-549), with a poor incidence of apoptosis. The drug brought about G1 and S phase depletion together with arrest of cells in G2 phase and induced a significant accumulation of hyperploid cells showing active S phase DNA synthesis, with HCT-116 and A-549 cells being the most and least responsive, respectively. The drug also produced dramatic changes of the nuclear lamin B pattern, without lamin B cleavage and perturbation of the actin cytoskeleton. On the other hand, RPR-130401 elicited strictly additive interaction in combined treatment with ionizing radiation with regard to cell kill, altered cell cycle progression and induced hyperploidy.

Conclusions: The data suggest that disruption of orderly progression through mitosis and cytokinesis, is a major outcome of drug action and that this effect proceeds from inhibition of lamin B farnesylation. It is anticipated from the strict additivity of RPR-130401 and radiation that neither induced radiation resistance nor acute or late complications of radiotherapy, should occur in combined treatment with RPR-130401.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Actins / metabolism
  • Alkyl and Aryl Transferases / antagonists & inhibitors*
  • Blotting, Western
  • Cell Cycle / drug effects
  • Cell Division / drug effects
  • Cell Line, Tumor
  • Farnesyltranstransferase
  • Genes, ras*
  • Humans
  • Indoles / pharmacology*
  • Karyotyping
  • Lamin Type B / metabolism*
  • Mutation
  • Ploidies*
  • Radiation
  • Radiation Tolerance / drug effects*
  • Tubulin / metabolism

Substances

  • Actins
  • Indoles
  • Lamin Type B
  • RPR 130401
  • Tubulin
  • Alkyl and Aryl Transferases
  • Farnesyltranstransferase