In this study, the finding that a significant proportion of all dendritic cells (DCs) resident in vivo in the human postnatal thymus displayed a myeloid-related phenotype prompted us to re-examine the developmental origin of thymic DCs, a cell type hitherto considered to represent a homogeneous lymphoid-derived population. We show here that these novel intrathymic DCs are truly myeloid, as they arise from CD34(+) early thymic progenitors through CD34(lo) intermediates which have lost the capacity to generate T cells, but display myelomonocytic differentiation potential. We also demonstrate that phenotypically and functionally equivalent myeloid precursors devoid of T-cell potential do exist in vivo in the postnatal thymus. Moreover, although interleukin 7 (IL-7) supports the generation of such myeloid intermediates, we show that their developmental branching from the main intrathymic T-cell pathway is linked to the up-regulation of the myelomonocytic granulocyte macrophage-colony-stimulating factor (GM-CSF) receptor, to the down-regulation of the IL-7 receptor and to the lack of pre-T-cell receptor alpha (pTalpha) gene transcriptional activation. Taken together, these data challenge the current view that the thymus is colonized by a lymphoid-restricted progenitor and provide evidence that a more immature precursor population with lymphoid and myelomonocytic potential is actually seeding the human postnatal thymus.