The goal of our present studies has been to find novel ryanodine receptor (RyR1) interacting polypeptides that modulate the channel activity from the luminal side of RyR1. Using K(+) as charge carrier for recording of single channel events here we demonstrate a very unexpected observation that troponin I substantially alters RyR's gating behavior, and that RyR1 in association with troponin I becomes a rectifying Ca(2+) release channel. Troponin I rapidly locks the RyR1 in a non-conducting state only at a negative holding potential, and only when applied to the luminal side; switching to a positive holding potential results in the channel returning to its original activity, immediately. A hypothesis is proposed to account for how an intraluminally located, positively charged molecule might function as a RyR1 regulator under physiological conditions.