Selection for live bearing is thought to occur when the benefits of increasing offspring survival exceed the costs of reduced fecundity, mobility and the increased metabolic demands of carrying offspring throughout development. We present evidence that live bearing has evolved from egg laying 12 times in teleost (bony) fishes, bringing the total number of transitions to 21 to 22 times in all fishes, including elasmobranchs (sharks and rays). Live bearers produce larger offspring than egg layers in all of 13 independent comparisons for which data were available. However, contrary to our expectation there has not been a consistent reduction in fecundity; live bearers have fewer offspring in seven out of the 11 available comparisons. It was predicted that live bearers would have a larger body size, as this facilitates accommodation of developing offspring. This prediction was upheld in 14 out of 20 comparisons. However, this trend was driven by elasmobranchs, with large live bearers in seven out of eight comparisons. Thus, while the evolution of live bearing in elasmobranchs is correlated with predicted increases in offspring size and adult size, teleost live bearers do not have such a consistent suite of life-history correlates. This suggests that constraints or selection pressures on associated life histories may differ in live-bearing elasmobranchs and teleost fishes.