1. We evaluated the role of the cross-linking of Fc epsilon RI-mediated inositol 1,4,5-triphosphate (IP(3)) in the increase in cytosolic Ca(2+) level ([Ca(2+)](i)) using xestospongin C, a selective membrane permeable blocker of IP(3) receptor, in RBL-2H3 mast cells. 2. In the cells sensitized with anti-dinitrophenol (DNP) IgE, DNP-human serum albumin (DNP-HSA) and thapsigargin induced degranulation of beta-hexosaminidase and a sustained increase in [Ca(2+)](i). Xestospongin C (3 - 10 microM) inhibited both of these changes that were induced by DNP-HSA without changing those induced by thapsigargin. 3. In the absence of external Ca(2+), DNP-HSA induced a transient increase in [Ca(2+)](i). Xestospongin C (3 - 10 microM) inhibited this increase in [Ca(2+)](i). 4. In the cells permeabilized with beta-escin, the application of IP(3) decreased Ca(2+) in the endoplasmic reticulum (ER) as evaluated by mag-fura-2. Xestospongin C (3 - 10 microM) inhibited the effect of IP(3). 5. After the depletion of Ca(2+) stores due to stimulation with DNP-HSA or thapsigargin, the addition of Ca(2+) induced capacitative calcium entry (CCE). Xestospongin C (3 - 10 microM) inhibited the DNP-HSA-induced CCE, whereas it did not affect the thapsigargin-induced CCE. 6. These results suggest that Fc epsilon RI-mediated generation of IP(3) contributes to Ca(2+) release not only in the initial phase but also in the sustained phase of the increase in [Ca(2+)](i), resulting in prolonged Ca(2+) depletion in the ER. The ER Ca(2+) depletion may subsequently activate CCE to achieve a continuous [Ca(2+)](i) increase, which is necessary for degranulation in the RBL-2H3 mast cells. Xestospongin C may inhibit Ca(2+) release and consequently may attenuate degranulation.