Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA) analogs, and the synthesis, stereochemistry, and enantiopharmacology of 3-methyl-AA (4a-d), 4-methyl-AA (5a-d), 5-methyl-AA (6a-d), and (E)-Delta(4)-5-methyl-AA (7a and 7b) are reported. The compounds were resolved using chiral HPLC and the configurational assignments of the enantiomers were based on X-ray crystallographic analyses, chemical correlation, and CD spectral analyses. The effects of the individual stereoisomers at ionotropic and metabotropic (S)-Glu receptors (iGluRs and mGluRs) were characterized. Compounds with S-configuration at the alpha-carbon generally showed mGluR2 agonist activity of similar or slightly lower potencies than (S)-AA [e.g., EC(50) = 76 microM for (2S,4S)-4-methyl-AA (5a) as compared to EC(50) = 35 microM for (S)-AA]. The position of the methyl substituent had a profound effect on the observed pharmacology, whereas the absolute stereochemistry at the methylated carbon atom had a very limited effect on pharmacology. Structure-activity relationships at iGluRs in the rat cortical wedge preparation showed a complex pattern, some compounds being NMDA receptor agonists [e.g., EC(50) =110 microM for (2S,5RS)-5-methyl-AA (6a,b)] and some compounds showing NMDA receptor antagonist effects [e.g., IC(50) = 300 microM for (2R,4S)-4-methyl-AA (5d)]. The two unsaturated analogs (S)- (7a) and (R)-(E)-Delta(4)-5-methyl-AA (7b) turned out to be a weak AMPA receptor agonist and a weak mixed NMDA/AMPA receptor antagonist, respectively.
Copyright 2002 Wiley-Liss, Inc.