In the intestinal tract of fifth instars of the hematophagous reduviid bugs Rhodnius prolixus and Triatoma infestans blood ingestion induced an initial decrease of the concentration of the respective symbiotic bacteria Rhodococcus rhodnii and Nocardia sp. and then within 10 days a 15- or 18-fold increase of the total population/bug to about 0.8 x 10(9) colony-forming units in R. prolixus and 1.8 x 10(9) colony-forming units in T. infestans. About 95-99% of the total populations of both symbionts developed in the anterior midgut regions, i.e., cardia and stomach. The passage from the blood-storing stomach to the digesting small intestine caused a considerable breakdown of symbiont populations, and only about 0.01% of the total population was present in the rectum. These were excreted mainly within 4 h after a blood meal. After infection with three species of trypanosomatids, R. rhodnii, the symbiont of R. prolixus, was affected by Trypanosoma rangeli, but not by Blastocrithidia triatomae or Trypanosoma cruzi. On the other hand, in T. infestans the concentration of Nocardia sp. was reduced after infection with B. triatomae, but not by T. rangeli nor T. cruzi. In long-term B. triatomae-infected T. infestans, this reduction and a reduced diuretic activity after feeding synergistically lowered the symbiont concentration in the singly deposited feces/urine drops drastically compared to uninfected controls. These data strongly support the theory of the mechanisms of pathogenicity of T. rangeli and B. triatomae for R. prolixus and T. infestans, respectively, that the primal point of attack is the host-specific symbiont, R. rhodnii and Nocardia sp., respectively.
Copyright 2002 Elsevier Science (USA).