In the current study, we isolated sublines of the human breast adenocarcinoma cell line MDA 435 that exhibited increasing resistance to epothilone A, a microtubule-stabilizing cytotoxic agent. The resistant cells did not express P glycoprotein or multidrug resistance-associated protein (MRP) which are known mediators of multidrug resistance (MDR). Two groups of epothilone A-resistant cells were selected: cells which exhibited low resistance to both epothilone A and Taxol, and cells which exhibit low resistance to Taxol but high resistance to epothilone A. cDNA microarrays of epothilone A-resistant and Taxol-resistant cells were utilized to further characterize epothilone A resistance. Hierarchical clustering of genes according to their levels of expression indicated that the majority of genes which were highly expressed in epothilone A-resistant cells but not in taxol-resistant MDR cells encode known interferon-inducible proteins. Genes whose expression increased with increasing epothilone A resistance include microtubule-associated GTPases, cytoskeletal proteins, cell signalling proteins and a drug metabolising enzyme. The majority of the genes that were repressed in both epothilone A- and Taxol-resistant cells encode proteins regulating cellular growth signalling mechanisms.