To examine whether the exonuclease activity intrinsic to the polymerase (Pol) of herpes simplex virus type 1 can influence the mutational spectra, we applied the denaturing gradient gel electrophoresis (DGGE) system combined with sequencing to characterize thymidine kinase mutants isolated from both the wild-type virus and a mutant deficient in exonuclease activity, Y7. Wild-type viruses produced predominantly frameshift mutations (67%), whereas Y7 replicated a significantly lower proportion of frameshifts (21%; P < 0.005). Furthermore, the majority of substitutions were transitional changes in both groups, although they distributed differently. The implications of these findings are discussed.