Background: Allergic individuals respond to only a few specific antigens, therefore allergic diseases are characterized by antigen specificity. Clarification of the mechanism of antigen specificity will lead to progress in the therapy of allergic diseases.
Objectives: The purpose of this study is to determine the specific association among T cell epitopes, antigen-presenting molecules and T cell receptor (TCR), and to determine the TCR usage in the pathogenesis of allergies using antigen-specific T cell clones (TCCs). The results can clarify the mechanism of the antigen specificity of allergic diseases, and provide new therapeutic possibilities using analogue peptides.
Methods: Short-term T cell clones specific to beta-lactoglobulin (BLG) were established from peripheral blood mononuclear cells (PBMCs) collected from five patients allergic to cow's milk. We then identified the T cell epitopes and antigen-presenting molecules, and examined TCR usage. We also determined the sequence of the TCR-complementarity-determining region 3 (CDR3).
Results: Six TCCs established from the five patients recognized three different peptides, and BLGp97-117 was recognized by four of the six TCCs. BLGp101-112 (KYLLFCMENSAE) was the core sequence in the fragment. Sequence analysis of TCR by the RT-PCR method revealed a marked heterogeneity in TCR usage, and similar amino acid sequences were recognized in the CDR3 region. Four of the six TCCs recognized BLG in association with human leucocyte antigen (HLA)-DRB1*0405 as antigen-presenting molecules.
Conclusion: We proposed the motif of the interaction between the HLA-DRB1*0405 allele and antigen peptide, and suggested that HLA-DRB1*0405 is an immunoregulatory gene product for T cell responses to BLG.