Pharmacological preconditioning with resveratrol: role of nitric oxide

Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H1988-95. doi: 10.1152/ajpheart.01012.2001.

Abstract

Resveratrol (trans-3,4',5-trihydroxystilbene), a recently described grape-derived polyphenolic antioxidant, has been found to protect the heart from ischemic-reperfusion injury. The present study sought to determine the mechanism of cardioprotection by investigating the ability of resveratrol to precondition the heart. Isolated perfused rat hearts were randomly divided into six groups: group I was perfused for 15 min with Kreb-Henseleit buffer (KHB) only; group II was perfused with 10 microM resveratrol; group III was perfused with 10 microM resveratrol plus 100 microM N(G)-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide (NO) synthase (NOS) inhibitor; group IV was perfused with 10 microM resveratrol plus 100 microM aminoguanidine (AG), an inducible NOS (iNOS) blocker; and groups V and VI consisted of hearts perfused with L-NAME and AG, respectively. The perfusion was then switched to working mode, and all hearts were made globally ischemic for 30 min followed by 2 h of reperfusion. Preconditioning of the hearts with resveratrol provided cardioprotection as evidenced by improved postischemic ventricular functional recovery (developed pressure and aortic flow) and reduced myocardial infarct size and cardiomyocyte apoptosis. Resveratrol-mediated cardioprotection was completely abolished by both L-NAME and AG. In a separate study, hearts were examined for iNOS mRNA induction. Resveratrol caused an induction of the expression of iNOS mRNA beginning at 30 min after reperfusion, increasing steadily up to 60 min of reperfusion, and then decreasing progressively up to 2 h after reperfusion. Preperfusion of the hearts with AG almost completely blocked the induction of iNOS. The results of our study demonstrate that resveratrol can pharmacologically precondition the heart in a NO-dependent manner.

Publication types

  • Research Support, U.S. Gov't, P.H.S.
  • Retracted Publication

MeSH terms

  • Animals
  • Apoptosis
  • Enzyme Inhibitors / pharmacology
  • Gene Expression / drug effects
  • Guanidines / pharmacology
  • Heart Ventricles / physiopathology
  • Ischemic Preconditioning / methods*
  • Malondialdehyde / metabolism
  • Myocardial Infarction / pathology
  • Myocardial Infarction / physiopathology
  • Myocardial Ischemia / physiopathology
  • Myocardial Reperfusion Injury / prevention & control*
  • Myocardium / pathology
  • NG-Nitroarginine Methyl Ester / pharmacology
  • Nitric Oxide / physiology*
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Nitric Oxide Synthase / genetics
  • Nitric Oxide Synthase Type II
  • RNA, Messenger / biosynthesis
  • Rats
  • Rats, Sprague-Dawley
  • Resveratrol
  • Stilbenes / administration & dosage
  • Stilbenes / therapeutic use*

Substances

  • Enzyme Inhibitors
  • Guanidines
  • RNA, Messenger
  • Stilbenes
  • Nitric Oxide
  • Malondialdehyde
  • Nitric Oxide Synthase
  • Nitric Oxide Synthase Type II
  • Nos2 protein, rat
  • Resveratrol
  • pimagedine
  • NG-Nitroarginine Methyl Ester