Parkinson's disease is one of the most likely neurological disorders to be fully treatable by drugs and new therapeutic modalities. The age-dependent and multifactorial nature of its pathogenesis allows for many strategies of intervention and repair. Most data indicate that the selectively vulnerable dopaminergic neurons in the substantia nigra of patients that have developed Parkinson's disease can be modified by protective and reparative therapies. First, the oxidative stress, protein abnormalities, and cellular inclusions typically seen could be dealt with by anti-oxidants, trophic factors, and proteolytic enhancements. Secondly, if the delay of degeneration is not sufficient, then immature dopamine neurons can be placed in the parkinsonian brain by transplantation. Such neurons can be derived from stem cell sources or even stimulated to repair from endogenous stem cells. Novel molecular and cellular treatments provide new tools to prevent and alleviate Parkinson's disease.