MPTP or its metabolite MPP+ are used to produce a Parkinsonism syndrome in a variety of animal species. The present study describes the effects of intranigral MPP+ administration either at 10 or 40 microg on the neuronal dopamine transporter (DAT) activity measured in rat striatal synaptosomes at different times after lesion. The 40 microg MPP+ injection induced a maximal toxic effect on day 7. However, 10 microg MPP+ progressively inhibited DA uptake on the injured side. V(max) decreased in a time-dependent manner and the lowest value was observed on day 21 after lesion. At this time, the K(m) value began to increase and was continuously accentuated until day 45 as compared to the contralateral side. Treatments either with the antioxidant alpha-tocopherol acetate or the MAO inhibitor pargyline, given daily for 7 days after lesion, partially prevented the 40 microg MPP(+)-induced inhibition of DA uptake. Conversely, both treatments given daily for 21 days after lesion completely prevented the alteration of DAT activity in the ipsilateral striatum induced by 10 microg MPP+. The absence of protection when both treatments were stopped 2 weeks before DA uptake measurements indicated that free radicals and DA oxidized products were continuously accumulated and gradually affected the functionality of the DAT. These results demonstrate that a rat intranigral lesion with 10 microg MPP+ led to a progressive impairment of DAT activity.