Improvement of chemically-activated luciferase gene expression bioassay for detection of dioxin-like chemicals

Biomed Environ Sci. 2002 Mar;15(1):58-66.

Abstract

Objective: To improve the chemically-activated luciferase expression (CALUX) bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs.

Methods: A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2 used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-O-deethylase (EROD) activity induction assay.

Results: The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.11 pmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100 pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%.

Conclusion: The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biological Assay / methods
  • Carcinoma, Hepatocellular / pathology
  • Cytochrome P-450 CYP1A1 / biosynthesis
  • Environmental Pollutants / adverse effects*
  • Environmental Pollutants / pharmacology
  • Enzyme Induction
  • Gene Expression Regulation*
  • Humans
  • Luciferases / biosynthesis*
  • Polychlorinated Dibenzodioxins / adverse effects*
  • Polychlorinated Dibenzodioxins / pharmacology
  • Sensitivity and Specificity
  • Transfection
  • Tumor Cells, Cultured

Substances

  • Environmental Pollutants
  • Polychlorinated Dibenzodioxins
  • Luciferases
  • Cytochrome P-450 CYP1A1