A phylogenetic supertree of the bats (Mammalia: Chiroptera)

Biol Rev Camb Philos Soc. 2002 May;77(2):223-59. doi: 10.1017/s1464793101005899.

Abstract

We present the first estimate of the phylogenetic relationships among all 916 extant and nine recently extinct species of bats Mammalia: Chiroptera), a group that accounts for almost one-quarter of extant mammalian diversity. This phylogeny was derived by combining 105 estimates of bat phylogenetic relationships published since 1970 using the supertree construction technique of Matrix Representation with Parsimony (MRP). Despite the explosive growth in the number of phylogenetic studies of bats since 1990, phylogenetic relationships in the order have been studied non-randomly. For example, over one-third of all bat systematic studies to date have locused on relationships within Phyllostomidae, whereas relationships within clades such as Kerivoulinae and Murinae have never been studied using cladistic methods. Resolution in the supertree similarly differs among clades: overall resolution is poor (46.4%, of a fully bifurcating solution) but reaches 100% in some groups (e.g. relationships within Mormoopidae). The supertree analysis does not support a recent proposal that Microchiroptera is paraphyletic with respect to Megachiroptera, as the majority of source topologies support microbat monophyly. Although it is not a substitute for comprehensive phylogenetic analyses of primary molecular and morphological data, the bat supertree provides a useful tool for future phylogenetic comparative and macroevolutionary studies. Additionally, it identifies clades that have been little studied, highlights groups within which relationships are controversial, and like all phylogenetic studies, provides preliminary hypotheses that can form starting points for future phylogenetic studies of bats.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Chiroptera / classification*
  • Phylogeny*