Many streptococcal species belonging to the mitis and anginosus phylogenetic groups are known to be naturally competent for genetic transformation. Induction of the competent state in these bacteria is regulated by a quorum-sensing mechanism consisting of a secreted peptide pheromone encoded by comC and a two-component regulatory system encoded by comDE. Here we report that a natural isolate of a mitis group streptococcus (Atu-4) is competent for genetic transformation even though it has lost the gene encoding the competence pheromone. In contrast to other strains, induction of competence in Atu-4 is not regulated by cell density, since highly diluted cultures of this strain are still competent. Interestingly, competence in the Atu-4 strain is lost if the gene encoding the response regulator ComE is disrupted, demonstrating that this component of the quorum-sensing apparatus is still needed for competence development. These results indicate that mutations in ComD or ComE have resulted in a gain-of-function phenotype that allows competence without a competence pheromone. A highly similar strain lacking comC was isolated independently from another individual, suggesting that strains with this phenotype are able to survive in nature in competition with wild-type strains.