When Marburg virus (MBGV) nucleoprotein (NP) is expressed in insect cells, it binds to cellular RNA and forms NP-RNA complexes such as insect cell-expressed nucleoproteins from other nonsegmented negative-strand RNA viruses. Recombinant MBGV NP-RNA forms loose coils that resemble rabies virus N-RNA. MBGV NP monomers are rods that are spaced along the coil similar to the nucleoprotein monomers of the rabies virus N-RNA. High salt treatment induces tight coiling of the MBGV NP-RNA, again a characteristic observed for other nonsegmented negative-strand virus N-RNAs. Electron microscopy of fixed Marburg virus particles shows that the viral nucleocapsid has a smaller diameter than the free, recombinant NP-RNA. This difference in helical parameters could be caused by the interaction of other viral proteins with the NP-RNA. A similar but opposite phenomenon is observed for rhabdovirus nucleocapsids that are condensed by the viral matrix protein upon which they acquire a larger diameter. Finally, there appears to be an extensive and regular protein scaffold between the viral nucleocapsid and the membrane that seems not to exist in the other negative-strand RNA viruses.