The ATP-binding cassette transporter multidrug resistance 1 P-glycoprotein (MDR1 Pgp) has been implicated with the transport of lipids from the inner to the outer leaflet of the plasma membrane. While this has been unambigously shown for the fluorescent lipid analogues [N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]hexanoyl (C6-NBD)-phosphatidylcholine, -phosphatidylethanolamine, -sphingomyelin and -glucosylceramide, by using a novel approach we have now found significantly increased outward transport also for C6-NBD-phosphatidylserine (C6-NBD-PS) in EPG85-257 human gastric carcinoma cells overexpressing MDR1 (coding for MDR1 Pgp). The increased transport of C6-NBD-PS is mediated by MDR1 Pgp, shown by transport reduction nearly to the level of controls in the presence of MDR1 Pgp inhibitors [PSC 833, cyclosporin A and dexniguldipine hydrochloride (Dex)]. Addition of MK 571, a specific inhibitor of the MDR protein MRP1, does not decrease transport in either of the two cell lines. The plasma-membrane association of FITC-annexin V, a fluorescent protein conjugate binding PS, is significantly increased in MDR1-overexpressing cells as compared with controls, and can be reduced by an MDR1 Pgp inhibitor. This suggests that MDR1 Pgp transports endogenous PS, the lipid exhibiting the most pronounced transverse asymmetry in the plasma membrane.