The power of comparative genomic hybridization (CGH) has been clearly proven since the first paper appeared in 1992 as a tool to characterize chromosomal imbalances in neoplasias. This review summarizes the chromosomal imbalances detected by CGH in solid tumors and in hemopathies. In May of 2001, we took a census of 430 articles providing information on 11,984 cases of human solid tumors or hematologic malignancies. Comparative generic hybridization has detected a number of recurrent regions of amplification or deletion that allows for identification of new chromosomal loci (oncogenes, tumor suppressor genes, or other genes) involved in the development, progression, and clonal evolution of tumors. When CGH data from different studies are combined, a pattern of nonrandom genetic aberrations appears. As expected, some of these gains and losses are common to different types of pathologies, while others are more tumor-specific.