The lens capsule, which is also called the lens basement membrane, is a specialized extracellular matrix produced anteriorly by the lens epithelium and posteriorly by newly differentiated fiber cells. SPARC (secreted protein, acidic and rich in cysteine) is a matricellular glycoprotein that regulates cell-cell and cell-matrix interactions, cellular proliferation and differentiation, and the expression of genes encoding extracellular matrix components. SPARC-null mice exhibit lens opacity 1 month after birth and mature cataract and capsular rupture at 5-7 months. In this study, we report disruption of the structural integrity of the lens capsule in mice lacking SPARC. The major structural protein of basement membrane, collagen type IV, in the lens capsule was substantially altered in the absence of SPARC. The lens cells immediately beneath the capsule showed aberrant morphology, with numerous protrusions into the lens basement membrane. SPARC-null lenses at 1 month of age exhibited an increased penetration of dye or radioactive tracer through the capsule, as well as a higher content of water than their wild-type counterparts. Moreover, SPARC-null fibers exhibited swelling as early as 1 month of age; by 3 months, all the fiber cells appeared swollen to a marked degree. By contrast, the absence of SPARC had no apparent morphological effect on the early stages of lens formation, cell proliferation or fiber cell differentiation. Degradation of crystallins and MIP 26, or changes in the levels of these proteins, were not detected. These results underscore the importance of the capsular extracellular matrix in the maintenance of lens transparency and indicate that SPARC participates in the synthesis, assembly and/or stabilization of the lens basement membrane.