Midwave and long-wave infrared propagation were measured in the marine atmosphere close to the surface of the ocean. Data were collected near San Diego Bay for two weeks in November 1996 over a 15-km horizontal path. The data are interpreted in terms of effects expected from molecules, aerosol particles, and refraction. Aerosol particles are a dominant influence in this coastal zone. They induce a diurnal variation in transmission as their character changes with regular changes in wind direction. A refractive propagation factor calculation is introduced, and it is systematically applied to the model and to the data analysis. It is shown that this refractive propagation factor is a necessary component of a complete near-sea-surface infrared transmission model.