Heat-induced cell death and apoptosis were studied with respect to intracellular ATP. Studies on the relationship between hyperthermic cell-killing at 44 degrees C and cellular ATP levels in four cell lines grown as monolayers and six cell lines grown in suspension showed good correlations between cellular ATP levels and the sensitivity to heat. D(0) values (the dose required to reduce survival in the linear portion of the response by 63%) linearly increased with an increase in cellular ATP levels. No such changes in sensitivity to heat were observed between the cells cultured at different cell densities, regardless of the change in the cellular ATP level. These results suggest that cellular intrinsic ability to supply ATP rather than the level of pooled ATP per se is responsible for the thermal response. Heat-induced apoptosis in L5178Y cells was observed following treatment at 42 degrees C for 70 min, 44 degrees C for 20 min or 47 degrees C for 3 min, which corresponded to surviving fractions of 25, 0.6 and 0.8%, respectively, but not at 47 degrees C for 20 min, indicating that mild heat shock induced apoptosis. 2-deoxyglucose (2DG) and 2,4-dinitrophenol (DNP) increased the sensitivity to heat and affected the mode of cell death. Cells treated with 2DG and DNP (2DG/DNP) were heated at 42 degrees C for 20 min, and then incubated at 37 degrees C for up to 2h in the presence or absence of 2DG/DNP. In the absence of 2DG/DNP, the cellular ATP level recovered to 76% of the control level and DNA ladder formation was observed, whereas in the presence of 2DG/DNP, the cellular ATP level was further decreased (3-7% of the control) and no DNA fragmentation was detected. These results suggest that the inhibition of ATP synthesis is closely associated with the enhancement of sensitivity to heat and that ATP is required for the induction of apoptosis.