Proteoglycan deposition around chondrocytes in agarose culture: construction of a physical and biological interface for mechanotransduction in cartilage

Biorheology. 2002;39(1-2):27-37.

Abstract

With a view towards the development of methods for cartilage tissue engineering, matrix deposition around individual chondrocytes was studied during de novo matrix synthesis in agarose suspension culture. At a range of times in culture from 2 days to 1 month (long enough for cartilage-like material properties to begin to emerge), pericellular distributions of proteoglycan and matrix protein deposition were measured by quantitative autoradiography, while matrix accumulation and cell volumes were estimated by stereological methods. Consistent with previous work, tissue-average rates of matrix synthesis generally decreased asymptotically with time in culture, as de novo matrix accumulated. Cell-scale analysis revealed that this evolution was accompanied by a transition from predominantly pericellular matrix (within a few microm from the cell membrane) deposition early in culture towards proteoglycan and protein deposition patterns more similar to those observed in cartilage explants at later times. This finding may suggest a differential recruitment of different proteoglycan metabolic pools as matrix assembly progresses. Cell volumes increased with time in culture, suggestive of alterations in volume regulatory processes associated with changes in the microphysical environment. Results emphasize a pattern of de novo matrix construction which proceeds outward from the pericellular matrix in a progressive fashion. These findings provide cell-scale insight into the mechanisms of assembly of matrix proteins and proteoglycans in de novo matrix, and may aid in the development of tissue engineering methods for cartilage repair.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cartilage, Articular / metabolism*
  • Cattle
  • Cell Size
  • Cells, Cultured
  • Chondrocytes / physiology*
  • Extracellular Matrix Proteins / metabolism*
  • Proteoglycans / metabolism*
  • Time Factors
  • Tissue Engineering*

Substances

  • Extracellular Matrix Proteins
  • Proteoglycans