The discovery of stem cells in the adult central nervous system raises questions concerning the neurotrophic factors that regulate postnatal neuronal development. Olfactory receptor neurons (ORNs) are a useful model, because they are capable of robust neurogenesis throughout adulthood. We have investigated the role of leukemia inhibitory factor (LIF) in postnatal neuronal development by using ORNs as a model. LIF is a multifunctional cytokine implicated in various aspects of neuronal development, including phenotype determination, survival, and in response to nerve injury. LIF-deficient mice display significant increases, both in the absolute amount and in the number of cells expressing olfactory marker protein, a marker of mature ORNs. The maturation of ORNs was significantly inhibited by LIF in vitro. LIF activated the STAT3 pathway in ORNs, and transfection of ORNs with a dominant negative form of STAT3 abolished the effect of LIF. These findings demonstrate that LIF negatively regulates ORN maturation via the STAT3 pathway. Thus, LIF plays a critical role in controlling the transition of ORNs to maturity. Consequently, a population of ORNs is maintained in an immature state to facilitate the rapid repopulation of the olfactory epithelium with mature neurons during normal cell turnover or after injury.