We investigated the effects of bovine somatotropin (bST) on mammary gland function and composition in the declining phase of lactation in goats. Sixteen Saanen goats, 180 +/- 11 days in milk (DIM), were divided equally into control and treated groups. The treated group received 120 mg/2 wk of slow-release bST for three cycles. Milk yield, milk composition, milk clotting measures, and plasmin-plasminogen activator activities were recorded weekly. Milk Na and K were determined in individual milk samples collected weekly during the third cycle. Blood samples were collected weekly during the second cycle and the plasma analyzed for nonesterified fatty acids (NEFA), glucose, and urea. At the end of the 6 wk, three goats from each group were slaughtered, and the udders were removed. Mammary gland weight, composition, and total DNA content were determined. The histological effects of bST on mammary tissue were investigated. The analyzed parameters included numbers of alveoli, corpora amylacea, apoptotic cells, and laminin fibronectin distribution and localization. An extensive morphological analysis on the epithelial and stromal components was performed. Milk yield was significantly higher in the treated group, fat content was not affected, but protein and nonprotein nitrogen were lower in treated goats milk. Treatment with bST did not influence milk pH but reduced coagulation time. Plasmin and plasminogen activator activities were not affected. Milk K levels were higher and the Na/K ratio was lower in treated animals. Plasma glucose, NEFA, and urea were unaffected. Mammary gland weight and total DNA were higher in treated than control animals, suggesting that with advancing lactation bST treatment maintains cells. Fat, protein, and collagen content of the mammary tissue did not differ between the groups. Treatment with bST significantly increased the number of lactating alveoli (LA) and significantly reduced the number of regressing alveoli (RA) and corpora amylacea, both within and outside the alveolar lumen. Laminin and fibronectin localization were not affected, and very few apoptotic cells were found in both treated and control samples. Our findings suggest that bST administration to dairy goats in late lactation can modulate mammary gland activity and improve lactation persistency; this is associated with maintained total mammary parenchyma weight and lactating alveoli.